Перевод: с немецкого на русский

с русского на немецкий

(о диапазоне)

  • 1 optische Strahlung

    1. оптическое излучение

     

    оптическое излучение
    свет

    Электромагнитное излучение с длинами волн, расположенными в диапазоне от 0,1 А до 1 см (оптическом диапазоне).
    Примечание. Указанные границы диапазонов длин волн условны, а сами длины волн даны для вакуума.
    [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    оптическое излучение
    Электромагнитное излучение (фотоны) с длинами волн от 1 нм до 1 мм.
    Примечание
    Оптическое излучение состоит из:
    а) переходной области рентгеновского излучения (диапазон длин волн от 1 до 100 нм);
    б) ультрафиолетового излучения (диапазон длин волн от 100 до 400 нм, в том числе УФ-А - от 315 до 400 нм, УФ-В - от 280 до 315 нм, УФ-С - от 100 до 280 нм; иногда область от 100 до 200 нм обозначают как область вакуумного ультрафиолета - ВУФ);
    в) видимого излучения света (диапазон длин волн от 380-400 до 760-780 нм);
    г) инфракрасного излучения (диапазон длин волн от 780 нм до 1 мм, в том числе ИК-А - от 780 до 1400 нм, ИК-В - от 1,4 до 3 мкм, ИК-С - от 3 мкм до 1 мм).
    [ ГОСТ 25645.321-87] 

    оптическое излучение
    Электромагнитное излучение, характеризующееся длинами волн, расположенными в диапазоне 5•10-9-10-3 м.
    Примечание
    В указанном диапазоне электромагнитные волны наиболее эффективно изучаются оптическими методами, для которых характерно формирование направленных потоков электромагнитных волн с помощью оптических систем
    [ ГОСТ 21934-83

    оптическое излучение
    Электромагнитное излучение с длинами волн примерно от 1 нм до 1 мм.
    Примечание
    Оптическая область спектра делится на ультрафиолетовую, видимую и инфракрасную.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    Синонимы

    EN

    DE

    Немецко-русский словарь нормативно-технической терминологии > optische Strahlung

  • 2 gespreizt

    прил.
    1) общ. надутый, напыщенно, чванно, чванный, широко расставленный, напыщенный, растопыренный

    Универсальный немецко-русский словарь > gespreizt

  • 3 Reflexionsgrad

    1. коэффициент отражения (штриховое кодирование)
    2. коэффициент отражения
    3. альбедо

     

    альбедо
    Характеристика отражательной способности поверхности тела; определяется отношением светового потока, отражённого (рассеянного) этой поверхностью, к световому потоку, падающему на неё
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    альбедо
    Способность поверхности отражать солнечную радиацию. А. свежевыпавшего снега - 0,9; А. тающего снега - 0,7; А. чистого льда - 0,4.
    [ Словарь геологических терминов и понятий. Томский Государственный Университет]

    Тематики

    • геология, геофизика

    Обобщающие термины

    EN

    DE

    FR

     

    коэффициент отражения
    (ρ, R)
    Величина, определяемая отношением отраженного потока излучения к падающему потоку излучения.
    [ ГОСТ 26148-84]

    Тематики

    • оптика, оптические приборы и измерения

    Обобщающие термины

    • фотометрические параметры и характеристики веществ, сред и тел

    EN

    DE

    FR

     

    коэффициент отражения (штриховое кодирование)
    Величина, определяемая отношением отраженного потока излучения к потоку излучения, отраженному от эталонной меры.
    Примечания
    1. Коэффициент отражения измеряется в диапазоне от 0 до 1 при длине волны или диапазоне длин волн оптического излучения (спектральное отражение), указываемых в требованиях по применению.
    2. Коэффициент отражения может быть измерен с помощью фотометра или денситометра.
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Reflexionsgrad

  • 4 Licht

    1. видимое излучение

     

    видимое излучение
    видимый свет
    свет

    Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне от 0,40 до 0,76 мкм.
    Примечания.
    Термин «свет» имеет два значения: более широкое (оптическое излучение) и более узкое (видимое излучение). Такая неоднозначность термина отражает сложившееся положение в оптике.
    Указанные границы диапазонов длин волн условны, а сами длины волн даны для вакуума.
    Наряду с термином «излучение» пользуются также термином «радиация».
    Под термином «излучение» понимается также процесс его возникновения.
    [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    видимое излучение
    Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне 4•10-7-7,6•10-7 м
    [ ГОСТ 21934-83]

    видимое излучение
    свет

    Оптическое излучение, которое, попадая на сетчатую оболочку глаза, может вызвать зрительное ощущение (ощущение превращения энергии внешнего раздражителя в факт сознания). Видимое излучение имеет длины волн монохроматических составляющих в пределах 380-780 нм.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    Немецко-русский словарь нормативно-технической терминологии > Licht

  • 5 sichtbare Strahlung

    1. видимое излучение

     

    видимое излучение
    видимый свет
    свет

    Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне от 0,40 до 0,76 мкм.
    Примечания.
    Термин «свет» имеет два значения: более широкое (оптическое излучение) и более узкое (видимое излучение). Такая неоднозначность термина отражает сложившееся положение в оптике.
    Указанные границы диапазонов длин волн условны, а сами длины волн даны для вакуума.
    Наряду с термином «излучение» пользуются также термином «радиация».
    Под термином «излучение» понимается также процесс его возникновения.
    [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    видимое излучение
    Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне 4•10-7-7,6•10-7 м
    [ ГОСТ 21934-83]

    видимое излучение
    свет

    Оптическое излучение, которое, попадая на сетчатую оболочку глаза, может вызвать зрительное ощущение (ощущение превращения энергии внешнего раздражителя в факт сознания). Видимое излучение имеет длины волн монохроматических составляющих в пределах 380-780 нм.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    Немецко-русский словарь нормативно-технической терминологии > sichtbare Strahlung

  • 6 Sekundargruppe

    1. вторичная группа каналов тональной частоты системы передачи с ЧРК

     

    вторичная группа каналов тональной частоты системы передачи с ЧРК
    вторичная группа

    Совокупность пяти первичных групп каналов тональной частоты системы передачи с ЧРК, занимающих в диапазоне частот смежные участки с общей шириной 210 кГц.
    [ ГОСТ 22832-77]

    Тематики

    Синонимы

    EN

    DE

    FR

    13. Вторичная группа каналов тональной частоты системы передачи с ЧРК

    Вторичная группа

    D. Sekundargruppe

    Е. Supergroup

    F. Groupe secondaire

    Совокупность пяти первичных групп каналов тональной частоты системы передачи с ЧРК, занимающих в диапазоне частот смежные участки с общей шириной 240 кГц

    Источник: ГОСТ 22832-77: Аппаратура систем передачи с частотным разделением каналов. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Sekundargruppe

  • 7 Übergangsfrequenz der Stromverstärkung (Transitfrequenz)

    1. граничная частота коэффициента передачи тока

     

    граничная частота коэффициента передачи тока
    Частота, при которой модуль коэффициента передачи тока в схеме с общим эмиттером экстраполируется к единице.
    Обозначение
    fгр
    ft
    Примечание
    Частота, равная произведению модуля коэффициента передачи тока на частоту измерения, которая находится в диапазоне частот, где справедлив закон изменения модуля коэффициента передачи тока 6 дБ на октаву.
    [ ГОСТ 20003-74

    Тематики

    EN

    DE

    FR

    30. Граничная частота коэффициента передачи тока

    D. Übergangsfrequenz der Stromverstärkung (Transitfrequenz)

    E. Transition frequency

    F. Fréquence de transition

    fгр

    Частота, при которой модуль коэффициента передачи тока в схеме с общим эмиттером экстраполируется к единице.

    Примечание. Частота, равная произведению модуля коэффициента передачи тока на частоту измерения, которая находится в диапазоне частот, где справедлив закон изменения модуля коэффициента передачи тока 6 дБ на октаву

    Источник: ГОСТ 20003-74: Транзисторы биполярные. Термины, определения и буквенные обозначения параметров оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Übergangsfrequenz der Stromverstärkung (Transitfrequenz)

  • 8 Differenzdruckmessgerät

    1. дифференциальный манометр

     

    дифференциальный манометр
    дифманометр

    Манометр для измерения разности двух давлений.
    Примечание
    Дифманометр с верхним пределом измерения не более 40000 Па (4000 кгс/м2) называется микроманометром.
    [ГОСТ 8.271-77]

    дифференциальный манометр
    -

    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    EN

    differential-pressure gage
    (engineering) Apparatus to measure pressure differences between two points in a system; it can be a pressured liquid column balanced by a pressured liquid reservoir, a formed metallic pressure element with opposing force, or an electrical-electronic gage (such as strain, thermal-conductivity, or ionization).

    [ http://www.answers.com/topic/differential-pressure-gage#ixzz1gzzibWaQ]

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    4147
    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а – схема привода стрелки;
    б – блок первичного преобразования;
    1 – «плюсовый» сильфон;
    2 – «минусовый» сильфон;
    3 – шток;
    4 – рычаг;
    5 – торсионный вывод;
    6 – цилиндрическая пружина;
    7 – компенсатор;
    8 – плоскостный клапан;
    9 – основание;
    10 и 11 – крышки;
    12 – подводящий штуцер;
    13 – манжета;
    14 – дросселирующий канал;
    15 – клапан;
    16 – рычажная система;
    17 – трибко-секторный механизм;
    18 – стрелка;
    19 – регулировочный винт;
    20 – натяжная пружина;
    21 – пробка;
    22 – уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 – в кислородном варианте; дистиллированной водой – в варианте для пищевой промышленности и жидкостью ПМС-20 – для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой – «минусовый» сильфон – цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.
     

    4148
    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 – мембранная коробка;
    2 – держатель «плюсового» давления;
    3 – держатель «минусового» давления;
    4 – корпус;
    5 – передаточный механизм;
    6 – стрелка;
    7 – цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок. В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность – устойчивая работа при высоком статическом давлении.
     

    4149
    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – чувствительная гофрированная мембрана;
    4 – передающий шток;
    5 – передаточный механизм;
    6 – предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.

    4150
    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – входной блок;
    4 - чувствительная гофрированная мембрана;
    5 – толкатель;
    6 – сектор;
    7 – трибка;
    8 – стрелка;
    9 – циферблат;
    10 – разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.

    4151
    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – передающий шток;
    4 – сектор;
    5 – трибка;
    6 – коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.

    4152
    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 – поворотный магнит;
    2 – стрелка;
    3 – корпус;
    4 – магнитный поршень;
    5 – фторопластовый сальник;
    6 – рабочий канал;
    7 – пробка;
    8 – диапазонная пружина;
    9 – блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel_2_3_2]

     

    4145     4146
        Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 – держатели;
    3 и 4 – трубчатые пружины;
    5 и 8 – трибки;
    6 – стрелка «плюсового» давления;
    7 и 9 – шкалы избыточного давления;
    10 – стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров должны приниматься из следующего ряда:

    10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа;

    1; 1,6; 2,5; 4; 6,3 МПа.

    У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

    А = а × 10n, (2.7)

    где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

    Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

    0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

    Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

    25; 40; 63; 100; 160; 250; 400 и 630 кПа;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

    Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

    Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

    Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

    Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как

    ДСП 160 (0…630 кПа)-32 МПа-1,5.

    После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

    Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

    При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

    20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

    20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

    Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

    Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

    Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

    Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

    Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

    Дифференциальное давление, т. е. разность давлений р отсчитывается стрелкой на шкале циферблата.

    Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel2_2_4]

    Тематики

    Синонимы

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Differenzdruckmessgerät

  • 9 Messgerät

    1. измерительный прибор

     

    измерительный прибор
    прибор

    Средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне.
    Примечания
    1. По способу индикации значений измеряемой величины измерительные приборы разделяют на показывающие и регистрирующие.
    2.По действию измерительные приборы разделяют на интегрирующие и суммирующие. Различают также приборы прямого действия и приборы сравнения, аналоговые и цифровые приборы, самопишущие и печатающие приборы.
    [РМГ 29-99]

    измерительный прибор
    Средство измерений, предназначенное для получения значения измеряемой величины или оценки свойства в установленном диапазоне (участке) шкалы измерений.
    Примечание. Измерительный прибор, как правило, содержит меру и устройства для преобразования измеряемой величины (измеряемого свойства) в сигнал измерительной информации и его индикации в форме, доступной для восприятия.
    [МИ 2365-96]

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Messgerät

  • 10 industrielle Funkstorung

    1. индустриальная радиопомеха

     

    индустриальная радиопомеха
    Радиопомеха, которая создается электрическими или электронными устройствами.
    Примечания
    1. Под радиопомехой понимается электромагнитная помеха в диапазоне радиочастот.
    2. К индустриальным радиопомехам не относятся излучения, создаваемые ВЧ трактами радиопередатчиков.
    [ ГОСТ 14777-76]
    [ ГОСТ 24375-80]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    ОБЩИЕ ПОНЯТИЯ

    1. Индустриальная радиопомеха

    D. Industrielle Funkstörung

    E. Man-made noise

    F. Parasite industriel

    Радиопомеха, которая создается электрическими или электронными устройствами.

    Примечания:

    1. Под радиопомехой понимается электромагнитная помеха в диапазоне радиочастот.

    2. К индустриальным радиопомехам не относятся излучения, создаваемые ВЧ трактами радиопередатчиков

    Источник: ГОСТ 14777-76: Радиопомехи индустриальные. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > industrielle Funkstorung

  • 11 infrarote Strahlung

    1. инфракрасное излучение

     

    инфракрасное излучение
    Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне 7,6•10-7-10-3 м
    [ ГОСТ 21934-83

    инфракрасное излучение
    Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне от 0,76 мкм до 1 см.
    Примечания.
    Указанные границы диапазонов длин волн условны, а сами длины волн даны для вакуума.
    Наряду с термином «излучение» пользуются также термином «радиация».
    Под термином «излучение» понимается также процесс его возникновения.
    [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    инфракрасное излучение
    Оптическое излучение, длины волн монохроматических составляющих которого больше длин волн видимого излучения, но не более 1 мм.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    инфракрасное излучение

    Инфракрасное излучение — это излучение с длиной волны большей, чем у видимого излучения, поэтому его нельзя увидеть невооруженным глазом. Поскольку инфракрасное излучение можно зафиксировать как тепловое излучение, его можно отобразить на экране или заснять с помощью цифровой видеокамеры, при этом более теплые объекты будут отличаться своей яркостью от более темного холодного окружения (например, человеческое тело на фоне более холодных объектов).
    Поскольку цветные камеры способны фиксировать инфракрасное излучение, они оснащены специальным фильтром, ограничивающим пропускание инфракрасных лучей, чтобы избежать заметного глазу нарушения цветовой гаммы. При использовании камеры в очень темных местах или ночью этот фильтр можно снять. Это обеспечит попадание инфракрасных лучей на датчик с последующим преобразованием в видимое изображение.
    Инфракрасная лампа может служить источником дополнительного освещения во время ночной съемки, не излучая при этом видимого света.
    [ http://www.alltso.ru/publ/glossarij_setevoe_videonabljudenie_terminy/1-1-0-34]

    Тематики

    Обобщающие термины

    EN

    DE

    Немецко-русский словарь нормативно-технической терминологии > infrarote Strahlung

  • 12 ultrarote Strahlung

    1. инфракрасное излучение

     

    инфракрасное излучение
    Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне 7,6•10-7-10-3 м
    [ ГОСТ 21934-83

    инфракрасное излучение
    Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне от 0,76 мкм до 1 см.
    Примечания.
    Указанные границы диапазонов длин волн условны, а сами длины волн даны для вакуума.
    Наряду с термином «излучение» пользуются также термином «радиация».
    Под термином «излучение» понимается также процесс его возникновения.
    [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    инфракрасное излучение
    Оптическое излучение, длины волн монохроматических составляющих которого больше длин волн видимого излучения, но не более 1 мм.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    инфракрасное излучение

    Инфракрасное излучение — это излучение с длиной волны большей, чем у видимого излучения, поэтому его нельзя увидеть невооруженным глазом. Поскольку инфракрасное излучение можно зафиксировать как тепловое излучение, его можно отобразить на экране или заснять с помощью цифровой видеокамеры, при этом более теплые объекты будут отличаться своей яркостью от более темного холодного окружения (например, человеческое тело на фоне более холодных объектов).
    Поскольку цветные камеры способны фиксировать инфракрасное излучение, они оснащены специальным фильтром, ограничивающим пропускание инфракрасных лучей, чтобы избежать заметного глазу нарушения цветовой гаммы. При использовании камеры в очень темных местах или ночью этот фильтр можно снять. Это обеспечит попадание инфракрасных лучей на датчик с последующим преобразованием в видимое изображение.
    Инфракрасная лампа может служить источником дополнительного освещения во время ночной съемки, не излучая при этом видимого света.
    [ http://www.alltso.ru/publ/glossarij_setevoe_videonabljudenie_terminy/1-1-0-34]

    Тематики

    Обобщающие термины

    EN

    DE

    Немецко-русский словарь нормативно-технической терминологии > ultrarote Strahlung

  • 13 Kanalfilter

    1. канальный фильтр аппаратуры системы передачи с ЧРК

     

    канальный фильтр аппаратуры системы передачи с ЧРК
    канальный фильтр

    Полосовой фильтр аппаратуры системы передачи с ЧРК, формирующий полосу частот канала тональной частоты, преобразованную в диапазоне более высоких частот, путем подавления всех токов, частоты которых лежат за пределами этой полосы.
    [ ГОСТ 22832-77]

    Тематики

    Синонимы

    EN

    DE

    FR

    59. Канальный фильтр аппаратуры системы передачи с ЧРК

    Канальный фильтр

    D. Kanalfilter

    Е. Channel filter

    F. Filtre de voie

    Полосовой фильтр аппаратуры системы передачи с ЧРК, формирующий полосу частот канала тональной частоты, преобразованную в диапазоне более высоких частот, путем подавления всех токов, частоты которых лежат за пределами этой полосы

    Источник: ГОСТ 22832-77: Аппаратура систем передачи с частотным разделением каналов. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Kanalfilter

  • 14 Abhängigkeit zwischen Leitschaufel- und Laufschaufelregelung

    1. комбинаторная зависимость гидравлической турбины

     

    комбинаторная зависимость гидравлической турбины
    комбинаторная зависимость

    Зависимость отверстия направляющего аппарата гидравлической турбины от угла установки лопастей рабочего колеса, соответствующая наибольшему коэффициенту полезного действия во всем диапазоне нагрузок и напоров гидравлической турбины.
    [ ГОСТ 23956-80

    Тематики

    Синонимы

    EN

    DE

    FR

    52. Комбинаторная зависимость гидравлической турбины

    Комбинаторная зависимость

    D. Abhangigkeit zwischen Leitschaufel- und Laufschaufelregelung

    E. Cate-blade relationship

    F. Loi de conjugaison a came de turbine hydraulique

    Зависимость отверстия направляющего аппарата гидравлической турбины от угла установки лопастей рабочего колеса, соответствующая наибольшему коэффициенту полезного действия во всем диапазоне нагрузок и напоров гидравлической турбины

    Источник: ГОСТ 23956-80: Турбины гидравлические. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Abhängigkeit zwischen Leitschaufel- und Laufschaufelregelung

  • 15 Schutzgaslöten

    1. пайка в нейтральной газовой среде

     

    пайка в нейтральной газовой среде
    Бесфлюсовая пайка с применением инертного газа или газа, нейтрального по отношению к паяемым материалам и припою в диапазоне температур нагрева, выдержки и охлаждения.
    [ ГОСТ 17325-79

    Тематики

    • сварка, резка, пайка

    EN

    DE

    52. Пайка в нейтральной газовой среде

    D. Schutzgaslöten

    E. Brazing in protective atmosphere

    Бесфлюсовая пайка с применением инертного газа или газа, нейтрального по отношению к паяемым материалам и припою в диапазоне температур нагрева, выдержки и охлаждения

    Источник: ГОСТ 17325-79: Пайка и лужение. Основные термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Schutzgaslöten

  • 16 Primargruppe

    1. первичная группа каналов тональной частоты системы передачи с ЧРК

     

    первичная группа каналов тональной частоты системы передачи с ЧРК
    первичная группа

    Совокупность двенадцати каналов тональной частоты системы передачи ЧРК или четырех предгрупп, занимающих в диапазоне частот смежные участки с общей шириной 48 кГц.
    [ ГОСТ 22832-77]

    Тематики

    Синонимы

    EN

    DE

    FR

    11. Первичная группа каналов тональной частоты системы передачи с ЧРК

    Первичная группа

    D. Primargruppe

    Е. Group

    F. Groupe primaire

    Совокупность двенадцати каналов тональной частоты системы передачи ЧРК или четырех предгрупп, занимающих в диапазоне частот смежные участки с общей шириной 48 кГц

    Источник: ГОСТ 22832-77: Аппаратура систем передачи с частотным разделением каналов. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Primargruppe

  • 17 Vorgruppe

    1. предгруппа каналов тональной частоты системы передачи с ЧРК

     

    предгруппа каналов тональной частоты системы передачи с ЧРК
    предгруппа

    Совокупность трех каналов тональной частоты системы передачи с ЧРК, занимающих в диапазоне передаваемых частот смежные участки шириной по 4 кГц с общей шириной 12 кГц.
    [ ГОСТ 22832-77]

    Тематики

    Синонимы

    EN

    DE

    FR

    9. Предгруппа каналов тональной частоты системы передачи с ЧРК

    Предгруппа

    D. Vorgruppe

    Е. Pregrouppe

    F. Pregrouppe

    Совокупность трех каналов тональной частоты системы передачи с ЧРК, занимающих в диапазоне передаваемых частот смежные участки шириной по 4 кГц с общей шириной 12 кГц

    Источник: ГОСТ 22832-77: Аппаратура систем передачи с частотным разделением каналов. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Vorgruppe

  • 18 Kollektor-Basis-Durch-bruchspannung eines Phototransistors

    1. пробивное напряжение коллектор-база фототранзистора

     

    пробивное напряжение коллектор-база фототранзистора
    Пробивное напряжение между выводами коллектора и базы фототранзистора при открытом эмиттере и в отсутствие потока излучения в диапазоне спектральной чувствительности.
    Обозначение
    Uкпр к
    UBR CBO
    Примечание
    На ФЭПП может действовать равновесное тепловое излучение при заданной температуре в эффективном поле зрения ФЭПП.
    [ ГОСТ 21934-83

    Тематики

    • приемники излуч. полупроводн. и фотоприемн. устр.

    EN

    DE

    FR

    106. Пробивное напряжение коллектор-база фототранзистора

    D. Kollektor-Basis-Durch-bruchspannung eines Phototransistors

    E. Collector-base breakdown voltage of a phototransistor

    F. Tension de claquage collecteur-base de

    phototransistor

    x044.gif

    Пробивное напряжение между выводами коллектора и базы фототранзистора при открытом эмиттере и в отсутствие потока излучения в диапазоне спектральной чувствительности*

    Источник: ГОСТ 21934-83: Приемники излучения полупроводниковые фотоэлектрические и фотоприемные устройства. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Kollektor-Basis-Durch-bruchspannung eines Phototransistors

  • 19 Kollektor-Emitter-Durch-bruchspannung eines Phototransistors

    1. пробивное напряжение коллектор-эмиттер фототранзистора

     

    пробивное напряжение коллектор-эмиттер фототранзистора
    Пробивное напряжение между выводами коллектора и эмиттера фототранзистора при открытой базе и в отсутствие потока излучения в диапазоне спектральной чувствительности.
    Обозначение
    Uэпр к
    UBR CEO
    Примечание
    На ФЭПП может действовать равновесное тепловое излучение при заданной температуре в эффективном поле зрения ФЭПП.
    [ ГОСТ 21934-83

    Тематики

    • приемники излуч. полупроводн. и фотоприемн. устр.

    EN

    DE

    FR

    105. Пробивное напряжение коллектор-эмиттер фототранзистора

    D. Kollektor-Emitter-Durch-bruchspannung eines Phototransistors

    E. Collector-emitters breakdown voltage of a phototransistor

    F. Tension de claquage collecteur-émetteur de phototransistor

    x042.gif

    Пробивное напряжение между выводами коллектора и эмиттера фототранзистора при открытой базе и в отсутствие потока излучения в диапазоне спектральной чувствительности*

    Источник: ГОСТ 21934-83: Приемники излучения полупроводниковые фотоэлектрические и фотоприемные устройства. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Kollektor-Emitter-Durch-bruchspannung eines Phototransistors

  • 20 Emitter-Kollektor-Durch-bruchspannung eines Phtototransistors

    1. пробивное напряжение эмиттер-коллектор фототранзистора

     

    пробивное напряжение эмиттер-коллектор фототранзистора
    Пробивное напряжение между выводами эмиттера и коллектора при открытой базе и в отсутствие потока излучения в диапазоне спектральной чувствительности.
    Обозначение
    Uкпрэ
    UBR ECO
    Примечание
    На ФЭПП может действовать равновесное тепловое излучение при заданной температуре в эффективном поле зрения ФЭПП.
    [ ГОСТ 21934-83

    Тематики

    • приемники излуч. полупроводн. и фотоприемн. устр.

    EN

    DE

    FR

    108. Пробивное напряжение эмиттер-коллектор фототранзистора

    D. Emitter-Kollektor-Durch-bruchspannung eines Phtototransistors

    E. Emitter-collector breakdown voltage of a phototransistor

    F. Tension de claquage émetteur-collecteur de phototransistor

    x048.gif

    Пробивное напряжение между выводами эмиттера и коллектора при открытой базе и в отсутствие потока излучения в диапазоне спектральной чувствительности*

    Источник: ГОСТ 21934-83: Приемники излучения полупроводниковые фотоэлектрические и фотоприемные устройства. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Emitter-Kollektor-Durch-bruchspannung eines Phtototransistors

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»